Position Weight Matrix, Gibbs Sampler, and the Associated Significance Tests in Motif Characterization and Prediction

نویسنده

  • Xuhua Xia
چکیده

Position weight matrix (PWM) is not only one of the most widely used bioinformatic methods, but also a key component in more advanced computational algorithms (e.g., Gibbs sampler) for characterizing and discovering motifs in nucleotide or amino acid sequences. However, few generally applicable statistical tests are available for evaluating the significance of site patterns, PWM, and PWM scores (PWMS) of putative motifs. Statistical significance tests of the PWM output, that is, site-specific frequencies, PWM itself, and PWMS, are in disparate sources and have never been collected in a single paper, with the consequence that many implementations of PWM do not include any significance test. Here I review PWM-based methods used in motif characterization and prediction (including a detailed illustration of the Gibbs sampler for de novo motif discovery), present statistical and probabilistic rationales behind statistical significance tests relevant to PWM, and illustrate their application with real data. The multiple comparison problem associated with the test of site-specific frequencies is best handled by false discovery rate methods. The test of PWM, due to the use of pseudocounts, is best done by resampling methods. The test of individual PWMS for each sequence segment should be based on the extreme value distribution.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relation between weight matrix and substitution matrix: motif search by similarity

MOTIVATION The discovery of patterns shared by several sequences that differ greatly is a basic task in sequence analysis, and still a challenge. Several methods have been developed for detecting patterns. Methods commonly used for motif search include the Gibbs sampler, Expectation-Maximization (EM) algorithm and some intuitive greedy approaches. One cannot guarantee the optimality of the resu...

متن کامل

Op-molb130065 1720..1728

Since its first release in 2001 as mainly a software package for phylogenetic analysis, data analysis for molecular biology and evolution (DAMBE) has gained many new functions that may be classified into six categories: 1) sequence retrieval, editing, manipulation, and conversion among more than 20 standard sequence formats including MEGA, NEXUS, PHYLIP, GenBank, and the new NeXML format for in...

متن کامل

Prediction of MHC binding peptide using Gibbs motif sampler, weight matrix and artificial neural network

The identification of MHC restricted epitopes is an important goal in peptide based vaccine and diagnostic development. As wet lab experiments for identification of MHC binding peptide are expensive and time consuming, in silico tools have been developed as fast alternatives, however with low performance. In the present study, we used IEDB training and blind validation datasets for the predicti...

متن کامل

Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach

MOTIVATION Prediction of which peptides will bind a specific major histocompatibility complex (MHC) constitutes an important step in identifying potential T-cell epitopes suitable as vaccine candidates. MHC class II binding peptides have a broad length distribution complicating such predictions. Thus, identifying the correct alignment is a crucial part of identifying the core of an MHC class II...

متن کامل

The Gibbs Centroid Sampler

The Gibbs Centroid Sampler is a software package designed for locating conserved elements in biopolymer sequences. The Gibbs Centroid Sampler reports a centroid alignment, i.e. an alignment that has the minimum total distance to the set of samples chosen from the a posteriori probability distribution of transcription factor binding-site alignments. In so doing, it garners information from the f...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012